##########
LitLogger
##########
`LitLogger `_ enables seamless experiment tracking, logging, and artifact management on the `Lightning.ai `_ platform.
It integrates with your Fabric training loop to log metrics, hyperparameters, and model checkpoints automatically to the Lightning Experiments dashboard.
View your experiments at `lightning.ai `_ with real-time charts, compare runs, and share results with your team.
----
*****************
Set Up LitLogger
*****************
First, install the ``litlogger`` package:
.. code-block:: bash
pip install litlogger
That's it! LitLogger automatically detects your Lightning.ai credentials when running in a Lightning Studio or when logged in via the CLI.
----
*************
Track Metrics
*************
To start tracking metrics in your training loop, import the LitLogger and configure it with your settings:
.. testcode::
:skipif: not _LITLOGGER_AVAILABLE
from lightning.fabric import Fabric
from lightning.pytorch.loggers import LitLogger
# 1. Configure the logger
logger = LitLogger(name="my-experiment")
# 2. Pass it to Fabric
fabric = Fabric(loggers=logger)
Next, add :meth:`~lightning.fabric.fabric.Fabric.log` calls in your code:
.. testcode::
:skipif: not _LITLOGGER_AVAILABLE
value = 0.5 # Python scalar or tensor scalar
fabric.log("some_value", value)
To log multiple metrics at once, use :meth:`~lightning.fabric.fabric.Fabric.log_dict`:
.. testcode::
:skipif: not _LITLOGGER_AVAILABLE
loss, acc, other = 0.1, 0.95, 0.5
values = {"loss": loss, "acc": acc, "other": other}
fabric.log_dict(values)
----
********************
Log Hyperparameters
********************
Log your model's hyperparameters to keep track of your experiment configuration:
.. testcode::
:skipif: not _LITLOGGER_AVAILABLE
from lightning.pytorch.loggers import LitLogger
logger = LitLogger(name="my-experiment")
logger.log_hyperparams({
"learning_rate": 0.001,
"batch_size": 32,
"model": "resnet50",
})
You can also pass metadata directly when creating the logger:
.. testcode::
:skipif: not _LITLOGGER_AVAILABLE
from lightning.pytorch.loggers import LitLogger
logger = LitLogger(
name="my-experiment",
metadata={"learning_rate": "0.001", "batch_size": "32"},
)
----
***************
Log Checkpoints
***************
Enable automatic checkpoint logging with the ``log_model`` parameter:
.. testcode::
:skipif: not _LITLOGGER_AVAILABLE
from lightning.pytorch.loggers import LitLogger
logger = LitLogger(name="my-experiment", log_model=True)
Checkpoints will be automatically uploaded to the Lightning platform when saved.
You can also manually log model artifacts:
.. code-block:: python
# Log a model checkpoint file
logger.log_model_artifact("/path/to/checkpoint.ckpt")
# Log a model object directly
logger.log_model(model)
----
*************
Log Files
*************
Log any file as an artifact:
.. code-block:: python
# Log a configuration file
logger.log_file("config.yaml")
----
**************************
Capture Terminal Output
**************************
Enable terminal log capture to save your script's output:
.. testcode::
:skipif: not _LITLOGGER_AVAILABLE
from lightning.pytorch.loggers import LitLogger
logger = LitLogger(name="my-experiment", save_logs=True)
Your terminal output will be captured and available in the Lightning Experiments dashboard.
----
*********************
View Your Experiments
*********************
After running your training script, view your experiments at `lightning.ai `_.
The dashboard provides:
- Real-time metric charts
- Hyperparameter comparison
- Artifact management
- Team collaboration features
Access your experiment URL programmatically:
.. code-block:: python
print(logger.url)
|
|